metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

A uniform and one-dimensional stacking of 2,5-dichlorotetracyanoquinodimethanide molecules in the tetramethylarsonium salt

Kazumasa Ueda,^a* Toyonari Sugimoto,^a Toshiji Tada,^a Kei-ichiro Nishimura^a and Tomoyuki Mochida^b

 ^aResearch Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan, and ^bDepartment of Chemistry, Toho University, Funabashi, Chiba 274-8510, Japan Correspondence e-mail: kazueda@riast.osakafu-u.ac.jp

Received 23 October 2000 Accepted 3 January 2001

In the tetramethylarsonium salt of 2,5-dichloro-7,7,8,8-tetracyanoquinodimethanide [systematic name: tetramethylarsonium 2,2'-(2,5-dichlorocyclohexa-2,5-diene-1,4-diylidene)bis-(propanedinitrile)], $C_4H_{12}As^+ \cdot C_{12}H_2Cl_2N_4^-$ or $[As(CH_3)_4]$ -($C_{12}H_2Cl_2N_4$), the cation lies disordered about a twofold axis and the radical ion lies about an inversion center forming a uniform [interplanar distance 3.35 (2) Å] and one-dimensional stacking without any slip. The electrical conductivity of the single crystal at room temperature was less than 10^{-9} S cm⁻¹, and the temperature dependence of paramagnetic susceptibility obeyed a one-dimensional antiferromagnetic Heisenberg model with a spin-exchange integral of 83 K in the temperature range 1.8–320.0 K.

Comment

Tetracyanoquinodimethane (TCNQ), one of the familiar electron-acceptor molecules, can readily capture one electron to produce the corresponding radical anion (TCNQ⁻⁻), which has been isolated as alkali metal cation, ammonium, phosphonium and arsonium salts (Hoekstra et al., 1972; Konno & Saito, 1974; Konno et al., 1977). X-ray crystal structure determinations at room temperature and/or low temperatures were carried out for these salts, and dimerization of TCNQ⁻⁻ molecules was observed in all cases, except for the N-methylphenazinium (NMP⁺) salt with a triclinic phase (Fritchie, 1966; Coleman et al., 1972; Kobayashi, 1975; Morosin, 1975), in which TCNQ⁻⁻ molecules formed a uniform and one-dimensional stacking at room temperature. The stacking structure of TCNQ⁻⁻ molecules is strongly related to the electrical conducting properties of the salts. Thus, all the salts with a dimerized structure exhibited a semiconducting or insulating property, while for the NMP⁺ salt, the electrical conductivity at room temperature was not only very high (170 S cm⁻¹; Melby, 1965), but the temperature

dependence of the electrical conductivity was also like a metal in the temperature range 200–300 K, where a metal-to-insulator transition due to preferential dimerization occurred (Epstein *et al.*, 1972; Coleman *et al.*, 1973). A stable uniform and one-dimensional stacking structure of TCNQ⁻⁻ molecules is necessary in order to achieve a new metallic conducting TCNQ⁻⁻ salt and further to maintain the metallic state down to the liquid helium temperature. Introduction of a sterically bulky substituent to the TCNQ skeleton is the simplest approach to suppress the dimerization. We now report that a uniform and one-dimensional stacking structure can be produced by dichloro-substituted TCNQ⁻⁻ (Cl₂TCNQ⁻⁻) molecules.

Figs. 1, 2 and 3 show an ellipsoid plot of the tetramethylarsonium (AsMe₄⁺) salt of Cl₂TCNQ⁻ (AsMe₄⁺·Cl₂TCNQ⁻), the crystal structure viewed along the *a* and *c* axes, and the stacking of Cl₂TCNQ⁻ molecules in the crystal, respectively. The AsMe₄⁺ ion lies on a twofold axis and the Cl₂TCNQ⁻ molecule lies on a center of inversion. The AsMe₄⁺ ions and Cl₂TCNQ⁻ molecules form alternating layers along the *b* axis. Two of the four methyl groups in the AsMe₄⁺ ion are disordered. Each of the AsMe₄⁺ ions is located between two Cl₂TCNQ⁻ molecular planes. The dihedral angle between the six-membered ring and the C(CN)₂ group is 1.4 (2)°. As a

Figure 1

Displacement ellipsoid plot of the title salt with ellipsoids at the 50% probability level. [Symmetry code: (i) -x, y, $\frac{1}{2} - z$.]

result, the Cl₂TCNQ⁻⁻ molecule is almost planar. The present molecule is more planar than molecules of the TCNQ⁻⁻ salts with a dimerized structure, such as Na⁺·TCNQ⁻⁻ (corresponding dihedral angle: 5°; Konno & Saito, 1974), and comparable to that of NMP+·TCNQ'- with a triclinic phase. The Cl₂TCNQ⁻⁻ molecules stack without any slip to form a uniform and one-dimensional array along the c axis, although the long axes of the molecules are alternately inclined by a small angle of 18° . The interplanar distance is 3.35(2) Å, which is slightly shorter than 'a π -cloud thickness' (3.40 Å). It is noteworthy that the stacking structure of Cl₂TCNQ⁻⁻ molecules compares with that of TCNQ⁻⁻ molecules in the triclinic phase of NMP⁺·TCNQ⁻⁻; the stacking of TCNQ⁻⁻ molecules has a slipped structure, with a distance of 2.09 Å between the centers of the six-membered rings. It is remarkable that the interplanar distance is fairly short (3.26 Å) compared with 'a π -cloud thickness'.

The electrical conductivity of the single crystal at room temperature was less than 10^{-9} S cm⁻¹. In addition, the temperature dependence of paramagnetic susceptibility obeyed a one-dimensional antiferromagnetic Heisenberg model with a spin-exchange integral of 83 K in the temperature range 1.8–320.0 K. These results suggest that both spin and negative charge are localized on each Cl₂TCNQ⁻⁻ molecule. The electrical conducting and magnetic properties of AsMe₄⁺·Cl₂TCNQ⁻⁻ are remarkably different from those of

Figure 2

The crystal structure of $AsMe_4^+ \cdot Cl_2TCNQ^{--}$ viewed along (a) the c and (b) the a axis. Two of the four methyl groups in the $AsMe_4^+$ ion are disordered.

NMP⁺·TCNQ⁻⁻, *i.e.* metallic conductivity and Pauli paramagnetism between 200 and 300 K. It is conceivable that a special uniform and one-dimensional stacking structure is responsible for the metallic conductivity in the TCNQ⁻⁻ salts.

Figure 3

Schematic stacking of the TCNQ⁻⁻ molecules in NMP⁺·TCNQ⁻⁻ shown through (*a*) a top and (*b*) a side view (Fritchie, 1966; Coleman *et al.*, 1972; Kobayashi, 1975; Morosin, 1975).

Experimental

After Cl₂TCNQ (Wheland & Martin, 1975) was reacted with LiI in CH₃CN, the Li⁺ salt of Cl₂TCNQ⁻⁻ obtained was converted to the AsMe₄⁺ salt by treatment with an excess of AsMe₄⁺·I⁻ in H₂O. The crude AsMe₄⁺·Cl₂TCNQ⁻⁻ salt was recrystallized from CH₃CN/Et₂O to afford the single crystal used for analysis (m.p. > 573 K).

Crystal data

$[As(CH_3)_4](C_{12}H_2Cl_2N_4)$	$D_x = 1.350 \text{ Mg m}^{-3}$
$M_r = 408.14$	Mo $K\alpha$ radiation
Monoclinic, C2/c	Cell parameters from 24
a = 11.046 (3) Å	reflections
b = 27.336 (4) Å	$\theta = 12.9 14.8^{\circ}$
c = 6.707 (6) Å	$\mu = 1.962 \text{ mm}^{-1}$
$\beta = 97.45 \ (4)^{\circ}$	T = 296.2 K
$V = 2007 (1) \text{ Å}^3$	Prismatic, purple
Z = 4	$0.20 \times 0.20 \times 0.20$ mm
Data collection	
Rigaku AFC-5R diffractometer	$R_{\rm int} = 0.011$
ω –2 θ scans	$\theta_{\rm max} = 27.54^{\circ}$
Absorption correction: ψ scan	$h = 0 \rightarrow 14$
(North et al., 1968)	$k = 0 \rightarrow 35$
$T_{\min} = 0.668, T_{\max} = 0.675$	$l = -8 \rightarrow 8$
2434 measured reflections	3 standard reflections

2434 measured reflections 2323 independent reflections 1157 reflections with $F^2 > 2\sigma(F^2)$

Refinement

Refinement on FH-atom parameters not refinedR = 0.063 $w = 1/[\sigma^2(F_o) + 0.00096|F_o|^2]$ wR = 0.091 $(\Delta/\sigma)_{max} = 0.0023$ S = 1.95 $\Delta\rho_{max} = 0.78 \text{ e Å}^{-3}$ 1157 reflections $\Delta\rho_{min} = -0.28 \text{ e Å}^{-3}$ 114 parameters Δ

every 200 reflections

intensity decay: 10.0%

Table 1

Cl1-C5	1.735 (8)	C2-C4	1.454 (9)
N1-C1	1.16 (1)	C4-C5	1.42 (1)
N2-C3	1.12 (1)	C4-C6	1.39 (1)
C1-C2	1.41 (1)	$C5-C6^{i}$	1.336 (8)
C2-C3	1.45 (1)		
			110.0 (0)
N1 - C1 - C2	179.4 (10)	$C_2 - C_4 - C_6$	119.2 (8)
C1 - C2 - C3	111.8 (7)	C5 - C4 - C6	115.5 (6)
C1 - C2 - C4	119.8 (8)	Cl1-C5-C4	120.6 (5)
C3-C2-C4	128.4 (8)	$Cl1 - C5 - C6^{i}$	116.1 (6)
N2-C3-C2	172 (1)	$C4 - C5 - C6^{i}$	123.3 (7)
C2-C4-C5	125.3 (7)	C4-C6-C5 ⁱ	121.2 (7)
Cl1-C5-C4-C2	-1(1)	C2-C4-C5-C6 ⁱ	179.6 (7)
Cl1-C5-C4-C6	179.4 (5)	$C2 - C4 - C6 - C5^{i}$	-179.7(7)
Cl1-C5-C6 ⁱ -C4 ⁱ	-179.5(5)	C3-C2-C4-C5	0(1)
C1-C2-C4-C5	-179.0(7)	C3-C2-C4-C6	179.1 (7)
C1-C2-C4-C6	0 (1)		

Selected geometric parameters (Å, °).

Symmetry code: (i) -x, -y, 1-z.

H-atom positions were calculated at C-H distances of 0.95 Å and they were included in the final calculations but not refined.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1985a); cell refinement: MSC/ AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1985b); program(s) used to solve structure: *SIR*92; program(s) used to refine structure: *TEXSAN*; software used to prepare material for publication: *TEXSAN*.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1116). Services for accessing these data are described at the back of the journal.

References

- Coleman, L. B., Cohen, J. A., Garito, A. F. & Heeger, A. J. (1973). *Phys. Rev. B*, **7**, 2122.
- Coleman, L. B., Khanna, S. K., Garito, A. F., Heeger, A. J. & Morosin, B. (1972). *Phys. Lett. A*, **42**, 15–16.
- Epstein, A. J., Etemad, S., Garito, A. F. & Heeger, A. J. (1972). *Phys. Rev. B*, 5, 952–977.
- Fritchie, C. H. Jr (1966). Acta Cryst. 20, 892-898.
- Hoekstra, A., Spoelder, T. & Vos, A. (1972). Acta Cryst. B28, 14-25.
- Kobayashi, H. (1975). Bull. Chem. Soc. Jpn, 48, 1373-1377.
- Konno, M., Ishii, T. & Saito, Y. (1977). Acta Cryst. B33, 763-770.
- Konno, M. & Saito, Y. (1974). Acta Cryst. B30, 1294-1299.
- Melby, L. R. (1965). Can. J. Chem. 43, 1448-1453.
- Molecular Structure Corporation (1985a). *MSC/AFC Diffractometer Control Software*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1985b). *TEXSAN*. Version 1.10. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Morosin, B. (1975). Phys. Lett. A, 53, 455-456.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Wheland, R. C. & Martin, E. L. (1975). J. Org. Chem. 40, 3101-3109.